

CERTIFICATE OF ACCREDITATION

BSK Associates

in

Fresno, California, USA

has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established by the AASHTO Committee on Materials and Pavements.

The scope of accreditation can be viewed on the Directory of AASHTO Accredited Laboratories (aashtoresource.org).

AASHTO Executive Director

Ve Janshiel.

Moe Jamshidi, AASHTO COMP Chair

Quality Management System

Standard:	Acc	credited Since:
R18	Establishing and Implementing a Quality System for Construction Materials Testing Laboratories	03/04/2020
C1077 (Aggregate)	Laboratories Testing Concrete and Concrete Aggregates	09/18/2020
C1077 (Concrete)	Laboratories Testing Concrete and Concrete Aggregates	10/27/2021
D3666 (Aggregate)	Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	09/18/2020
D3666 (Asphalt Mixture) Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials	12/08/2020
D3740 (Soil)	Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Constructio	on 12/08/2020
E329 (Aggregate)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	09/18/2020
E329 (Asphalt Mixture)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	12/08/2020
E329 (Concrete)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	10/27/2021
E329 (Soil)	Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction	12/08/2020

Asphalt Mixture

Standard:	Accredited Since:
R47 Reducing Samples of Hot-Mix Asphalt to Testing Size	09/18/2020
R68 Preparation of Asphalt Mixtures by Means of the Marshall Apparatus	09/18/2020
T30 Mechanical Analysis of Extracted Aggregate	09/18/2020
T166 Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	05/24/2023
T209 Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	09/18/2020
T245 Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus	09/18/2020
T269 Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	09/18/2020
T275 Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens	09/18/2020
T308 Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	09/18/2020
T329 Moisture Content of Hot-Mix Asphalt (HMA) by Oven Method	09/18/2020
T355 Density of Bituminous Concrete In Place by Nuclear Methods	05/24/2023
D2041 Maximum Specific Gravity of Hot Mix Asphalt Paving Mixtures	09/18/2020
D2726 Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens	05/24/2023
D2950 Density of Bituminous Concrete In Place by Nuclear Methods	09/18/2020
D3203 Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures	09/18/2020
D3549 Thickness or Height of Compacted Bituminous Paving Mixture Specimens	09/18/2020
D5444 Mechanical Analysis of Extracted Aggregate	09/18/2020
D6307 Determining the Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method	09/18/2020
D6926 Preparation of Asphalt Mixtures by Means of the Marshall Apparatus	09/18/2020
D6927 Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus	09/18/2020

Page 2 of 8

Soil

Standard:		Accredited Since:	
R58	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	09/18/2020	
T88	Particle Size Analysis of Soils by Hydrometer	09/18/2020	
T89	Determining the Liquid Limit of Soils (Atterberg Limits)	09/18/2020	
T90	Plastic Limit of Soils (Atterberg Limits)	09/18/2020	
T99	The Moisture-Density Relations of Soils Using a 5.5 lb [2.5 kg] Rammer and a 12 in. [305 mm] Drop	09/18/2020	
T180	Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	09/18/2020	
T191	Density of Soil In-Place by the Sand Cone Method	09/18/2020	
T265	Laboratory Determination of Moisture Content of Soils	05/24/2023	
T310	In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)	09/18/2020	
D421	Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test	09/18/2020	
D422	Particle Size Analysis of Soils by Hydrometer	09/18/2020	
D698	The Moisture-Density Relations of Soils Using a 5.5 lb [2.5 kg] Rammer and a 12 in. [305 mm] Drop	09/18/2020	
D114	0 Amount of Material in Soils Finer than the No. 200 (75-μm) Sieve	05/24/2023	
D1556 Density of Soil In-Place by the Sand Cone Method			
D155	7 Moisture-Density Relations of Soils Using a 10 lb [4.54 kg] Rammer and an 18 in. [457 mm] Drop	09/18/2020	
D221	6 Laboratory Determination of Moisture Content of Soils	05/24/2023	
D248	7 Classification of Soils for Engineering Purposes (Unified Soil Classification System)	05/24/2023	
D248	8 Description and Identification of Soils (Visual-Manual Procedure)	05/24/2023	
D431	D4318 Determining the Liquid Limit of Soils (Atterberg Limits) 09/18/2		
D4318 Plastic Limit of Soils (Atterberg Limits) 09/18			
D693	8 In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)	09/18/2020	

Page 3 of 8

Aggregate

Standard:		
R76	Reducing Samples of Aggregate to Testing Size	09/15/2021
R90	Sampling Aggregate	05/24/2023
T11	Materials Finer Than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing	09/18/2020
T27	Sieve Analysis of Fine and Coarse Aggregates	09/18/2020
T84	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	09/18/2020
T85	Specific Gravity and Absorption of Coarse Aggregate	09/18/2020
T96	Resistance to Abrasion of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	05/24/2023
T176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	09/18/2020
T255	Total Moisture Content of Aggregate by Drying	09/15/2021
T304	Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	09/18/2020
T335	Determining the Percentage of Fractured Particles in Coarse Aggregate	09/18/2020
C117	Materials Finer Than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing	09/18/2020
C127	Specific Gravity and Absorption of Coarse Aggregate	09/18/2020
C128	Specific Gravity (Relative Density) and Absorption of Fine Aggregate	09/18/2020
C131	Resistance to Abrasion of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	05/24/2023
C136	Sieve Analysis of Fine and Coarse Aggregates	09/18/2020
C535	Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine	05/24/2023
C566	Total Moisture Content of Aggregate by Drying	09/15/2021
C702	Reducing Samples of Aggregate to Testing Size	09/15/2021
C125	2 Uncompacted Void Content of Fine Aggregate (Influenced by Shape, Texture, and Grading)	09/18/2020
D75	Sampling Aggregate	05/24/2023
D241	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	09/18/2020
D479	I Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate	09/18/2020

Page 4 of 8

Aggregate (Continued)

Standard:	Accredited Since:
D5821 Determining the Percentage of Fractured Particles in Coarse Aggregate	09/18/2020

Page 5 of 8

Iron and Steel

Standard:	Accredited Since:
A615-A370 Carbon-Steel Bars, Deformed and Plain: Tension (Elongation)	03/04/2020
A615-A370 Carbon-Steel Bars, Deformed and Plain: Tension (Ultimate Tensile Strength)	03/04/2020
A615-A370 Carbon-Steel Bars, Deformed and Plain: Tension (Yield Strength)	03/04/2020
A615-E290 Carbon-Steel Bars, Deformed and Plain: Bend Test	03/04/2020
A706-A370 Low Alloy Steel Bars, Deformed and Plain: Tension (Elongation)	03/04/2020
A706-A370 Low Alloy Steel Bars, Deformed and Plain: Tension (Ultimate Tensile Strength)	03/04/2020
A706-A370 Low Alloy Steel Bars, Deformed and Plain: Tension (Yield Strength)	03/04/2020
A706-E290 Low Alloy Steel Bars, Deformed and Plain: Bend Test	03/04/2020

Page 6 of 8

Concrete

Standard:		Accredited Since:
C31 (Cylinders)	Making and Curing Concrete Test Specimens in the Field	03/04/2020
C39	Compressive Strength of Cylindrical Concrete Specimens	03/04/2020
C138	Density (Unit Weight), Yield, and Air Content of Concrete	09/15/2021
C143	Slump of Hydraulic Cement Concrete	03/04/2020
C172	Sampling Freshly Mixed Concrete	03/04/2020
C173	Air Content of Freshly Mixed Concrete by the Volumetric Method	03/04/2020
C231	Air Content of Freshly Mixed Concrete by the Pressure Method	09/15/2021
C511	Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the testing of Hydraulic Cements and Concretes	03/04/2020
C617 (8000 psi and below	 Capping Cylindrical Concrete Specimens 	09/15/2021
C1064	Temperature of Freshly Mixed Portland Cement Concrete	03/04/2020
C1231 (7000 psi and belo	w) Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders	03/04/2020

Masonry

Standard:		Accredited Since:
C140 (Concrete	Masonry Units) Sampling and Testing Concrete Masonry Units and Related Units	03/04/2020
C1552	Capping Concrete Masonry Units, Related Units and Masonry Prisms for Compression Testing	03/04/2020

Page 8 of 8